Чем отличаются наука о данных, анализ данных и машинное обучение

Перевод статьи Клеофаса Мулонго «Difference Between Data Science, Analytics And Machine Learning».

Наука о данных, машинное обучение и анализ данных

Наука о данных, машинное обучение и анализ данных это три главные сферы деятельности, получившие в последние годы огромную популярность. Для профессионалов в этих областях настал их звездный час. Спрос на них на рынке труда высок. Предсказывают, что к 2020 году в этих сферах деятельности будет много открытых вакансий.

Так что же означают эти названия? Чем отличаются эти сферы деятельности? Чтобы ответить на эти и другие вопросы, мы сравнили науку о данных, машинное обучение и анализ данных.

Наука о данных

Что такое наука о данных?

Хотя этот предмет имеет множество определений, мы воспользуемся самым распространенным, которое будет понятно всем. Наука о данных это концепция, которая используется для работы с большими данными. Эта концепция включает аспекты подготовки данных, очистки данных и анализа данных.

В нормальных обстоятельствах человек, занимающийся наукой о данных, собирает данные из различных источников и применяет различные техники для того чтобы извлечь из этих наборов данных осмысленную информацию. Среди часто используемых при этом методов можно назвать предикативную аналитику, анализ настроений и даже машинное обучение.

Люди, занимающиеся наукой о данных, рассматривают эти данные с точки зрения бизнеса. Они стараются делать прогнозы максимально точно, поскольку на их основе могут приниматься решения.

Навыки, необходимые, чтобы заниматься наукой о данных

Вы хотите быть профессиональным data scientist? Есть несколько ключевых областей специализации, на которых вам нужно будет сфокусироваться. Это программирование, аналитика и предметная область (узкоспециальные знания).

Вам нужно будет приобрести следующие знания и навыки:

  • Практический опыт в программировании на Python.
  • Хорошие знания программирования баз данных SQL.
  • Способность работать с неструктурированными данными из различных источников, например, социальных медиа-платформ.
  • Знание машинного обучения.
  • Понимание аналитических функций.

Машинное обучение

Начнем с главного. Что такое машинное обучение?

Машинное обучение можно описать как процесс использования алгоритмов для тщательного исследования данных и извлечения из них осмысленной информации. Машинное обучение также может использовать заданные наборы данных для предсказания будущих тенденций. Годами программное обеспечение для машинного обучения использует статистический и предикативный анализ для определения шаблонов и выявления в них скрытых, но имеющих значение знаний.

Прекрасным примером реализации машинного обучения в жизни является алгоритм Facebook. Этот алгоритм создан для изучения вашего поведения в этой социальной сети. Полученные знания он затем использует для формирования вашей ленты. Amazon изучит ваше поведение в браузере, чтобы рекомендовать вам продукты, которые вы, вероятно, захотите купить. То же самое касается Netflix. Он будет рекомендовать вам фильмы, исходя из ваших привычек браузинга.

Что нужно, чтобы стать экспертом в машинном обучении?

Если рассматривать строго, то машинное обучение можно считать ответвлением как информатики, так и статистики. Если вы планируете остановить свой выбор на этой карьере, вам следует:

  • Приобрести опыт работы с компьютерными системами.
  • Овладеть практическими навыками программирования.
  • Разбираться в вероятностях и статистике.
  • Изучить моделирование данных.

Анализ данных

Чем отличаются наука о данных и машинное обучение?

Наука о данных это широкое поле деятельности, которое включает в себя многие дисциплины. Машинное обучение подпадает под понятие науки о данных, ведь оно применяет несколько техник, обычно используемых в этой сфере.

А вот наука о данных может быть производной машинного обучения, а может и не быть. Она включает в себя много дисциплин, в отличие от машинного обучения, которое концентрируется на одном предмете.

Анализ данных

Анализ данных, чтобы прийти к какому-то выводу, влечет за собой появление описательной статистики и визуализации данных. Он очень связан со статистикой. Аналитик должен уметь работать с числами. В большинстве случаев анализ данных рассматривается как базовая версия науки о данных.

Если вы занимаетесь анализом данных, вы должны хорошо уметь объяснять разнообразные причины, почему данные именно такие, какие есть. Вы должны уметь представлять данные таким образом, чтобы они были понятны каждому, а не только экспертам.

Какие навыки нужны, чтобы работать в сфере анализа данных?

Вы должны хорошо разбираться в следующих областях знаний:

Как видите, все три сферы деятельности тесно связаны друг с другом. Однако между ними существуют различия, о которых мы вам и рассказали в нашей статье. Надеемся, теперь вы сможете лучше различать науку о данных, машинное обучение и анализ данных.


[customscript]techrocks_custom_after_post_html[/customscript]
[customscript]techrocks_custom_script[/customscript]

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Прокрутить вверх