Data Science повсюду: заголовки новостей пестрят нейросетями и машинным обучением. Сайт proglib.io опубликовал подборку из 10 актуальных книг для освоения науки о данных. Представляем ее вашему вниманию.
1. Data Science
Автор — Джоэл Грас.
Автор изложил материал по Data Science в необходимом размере для скорейшего старта в профессии. Знания аналитики и дисциплины не потребуются. В процессе чтения вы будете изучать Python, алгебру, математический анализ и статистику, а также теорию вероятностей, машинное обучение и прочие темы. Дополнительный акцент сделан на методы анализа социальных сетей, основы баз данных и SQL.
2. Практическая статистика для специалистов Data Science
Авторы — Питер Брюс, Эндрю Брюс.
Для работы с изданием вам понадобятся знания математической статистики и языка R, а также базовые знания по общей теме. Легкодоступная форма подачи материала поможет быстро разобраться с такими темами, как: разведочный анализ данных, статистические эксперименты, проверка значимости, регрессия, классификация, машинное обучение и обучение без учителя.
3. Data Science
Авторы — Кэти О’Нил, Рэйчел Шатт.
Книга основана на курсе Колумбийского университета по анализу данных. В процессе обучения вы узнаете о байесовском методе, визуализации данных, статистических алгоритмах, рекомендательных движках, MapReduce и финансовом моделировании.
4. Теоретический минимум по Big Data
Авторы — Анналин Ын, Кеннет Су.
Издание не ориентировано только на профессионалов, заняться образованием могут начать аналитики, бизнесмены, программисты и непрофильные специалисты. На страницах этого труда рассматривается масса алгоритмов, каждому из которых посвящена отдельная глава, с картинками и примерами из реальных задач.
5. Основы Data Science и Big Data
Авторы — Дэви Силен, Арно Мейсман, Мохамед Али.
Изучение DS вы начнете с базовых вещей, а потом приступите к алгоритмам машинного обучения, массивам данных, NoSQL и т. д. В качестве языка программирования в этой книге используется Python со специальными библиотеками.
6. Python для сложных задач
Автор — Дж. Вандер Плас.
Данное руководство погрузит вас в самые популярные статистические методы обработки данных и научные исследования. В процессе прочтения вы сможете разобраться с тем, как считывать различные форматы данных, как их преобразовывать и визуализировать, а также строить статистические модели и применять машинное обучение.
7. Java Data Science Cookbook
Автор — R. Shams.
Если вам необходимо построить научные модели для производства – Java ваше все. С помощью крутых библиотек, таких как MLlib, Weka и DL4j, вы сможете эффективно выполнить все необходимые задачи по обработке данных. Книга начинается с рецептов для получения, индексирования и поиска данных. Затем вы перейдете к различным методам анализа и извлечения информации. Последним учебным этапом будет обработка Big Data, глубокое обучение и визуализация.
8. Python Data Science Essentials
Авторы — Alberto Boschetti, Luca Massaron.
Здесь вы найдете подробные примеры, которые помогут понять основные статистические методы сбора и анализа данных. Вы получите представление о передовых темах, таких как алгоритмы машинного обучения, распределенные вычисления, настройка моделей прогноза и обработка естественного языка. А еще вы познакомитесь с инструментами глубокого обучения, такими как XGBoost, LightGBM и CatBoost.
9. Jupyter for Data Science
Автор — Dan Toomey.
Если вы знакомы с Jupyter Notebook и хотите узнать, как использовать его возможности для выполнения различных задач в Data Science, эта книга для вас. Данное издание разъяснит каждый шаг внедрения эффективного конвейера обработки данных с использованием Jupyter от исследования данных до визуализации. Вы научитесь использовать функции Jupyter, чтобы делиться своими идеями и кодом с коллегами. В книге также описано, как Python 3, R и Julia могут быть интегрированы в Jupyter для различных задач обработки данных.
10. Principles of Strategic Data Science
Автор — Peter Prevos.
Книга начинается с объяснения того, что такое наука о данных и как организации могут ее использовать для оптимизации всех рабочих процессов. Затем автор приводит критерии надежности информационных продуктов и способы визуализации информации. В процессе изучения пятиэтапной структуры вы будете открывать для себя стратегические аспекты DS, которые позволяют повысить ценность извлекаемых данных. В заключительной главе рассматривается роль штатного аналитика данных в процессе интеграции DS-подхода в бизнес-процессы организации.
[customscript]techrocks_custom_after_post_html[/customscript]
[customscript]techrocks_custom_script[/customscript]